APPENDIX 1

Freshwater fishes recorded from different Drainage Divisions in South Australia. [$\mathrm{x}=$ recorded, ? unconfirmed records, *SA endemic, blue $=$ diadromous, green =euryhaline]

Family	Taxon	Common name	SEC	MD	SAG	LE	WP
Geotriidae	Geotria a ustralis	Pouched Lamprey	X	X	X		
Mordaciidae	Mordacia mordax	Shortheaded Lamprey	X	X	X		
Anguillidae	Anguilla australis a ustralis	Shortfinned Eel	x	X	X		
Plotosidae	Neosiluroides cooperensis	CooperCatfish				X	
	Neosilurus gloveri	Dalhousie Catfish				x	
	Neosilurus hyrtlii	Hyrtl's Catfish				X	
	Porochilus a rgenteus	Silver Catfish				x	
	Ta nda nus ta nda nus	Freshwater Catfish		x			
Clupeidae	Nematalosa erebi	Bony Herring		X	?	X	
Retropinnidae	Prototroctes maraena	Australian Grayling	x				
	Retro pinna semoni	Smelt	X	X		X	
Galaxidae	Gala xia s brevip innis	Climbing Galaxias	x	x	x		
	Gala xia s ma culatus	Common Galaxias	x	x	x		
	Gala xia s olidus	Mounta in Galaxias	X	x	X		
	Gala xia s rostratus	Flathead Galaxias		X			
	Gala xias trutta ceus	Spotted Gala xias	X				
	Gala xiella pusilla	Dwarf Galaxias	x				
	Neochanna cleaveri	Austra lian Mudfish	x				
Mela nota eniidae	Mela nota enia fluviatilis	Murra y Ra inbowfish	?	X			
	Mela notaenia splendida tatei	Desert Ra inbowfish				X	
Atherinidae	Atherinosoma mic rostoma	Sma llmo uthed Ha rd yhead	X	X	X		X
	Craterocephalus dalhousiensis	Da lhousie Ha rdyhead				*	
	Crateroc ep halus eyresii	Lake Eyre Ha rdyhead			*	*	?
	Craterocephalus fluvia tilis	Murray Ha rdyhead		X			
	Craterocephalus g loveri	G lover's Ha rdyhead				*	
	Craterocephalus stercusmusc a rum fulvus	Unspecked Hardyhead		X			
	Craterocephalus stercusmusc a rum stercusmusc a rum	Flyspecked Hardyhead				X	
Ambassidae	Amba ssis a ga ssizii	Aga ssiz's G lassfish		X			
	Ambassis sp.	Northwest G lassfish				X	
Percichthyidae	Gadopsis marmoratus	River Blackfish	x	x	X		

Appendix 1 continued....

Family	Taxon	Common name	SEC	MD	SAG	L	WP
	Maccullochella macquariensis	Trout Cod		x			
	Maccullochella peelii peelii	Murray Cod		x			
	Macquaria a mbigua a mbigua	Murray-Darling Golden Perch		x			
	Macquaria australasica	Macquarie Perch		x			
	Macquaria colonorum	Estua ry Perch	x	x			
	Macquaria sp.	Lake Eyre Golden Perch				x	
	Nannoperca australis	Southem Pygmy Perch	x	x	x		
	Nannoperca obscura	Yarra Pyg my Perch	x	x			
	Nannoperca variegata	Variegated Pygmy Perch	x				
Terapontidae	Amniataba percoides	Banded Grunter				x	
	Bid ya nus bid ya nus	Silver Perch		x			
	Bidya nus welchi	Welch's Grunter				x	
	Leiopotherapon unic olor	Spangled Grunter		x	?	x	?
	Scortum barcoo	Barcoo Grunter				x	
Pseuda phritidae	Pseuda phritis urvillii	Congolli	x	x	x		x
Eleotridae	Hypseleotris klunzingeri	Westem Carp Gudgeon		x		x	
Eleotridae	Hypseleotris klunzingeri	Westem Carp Gudgeon		x		x	
	Hypseleotris sp. 1	Midgley's Carp Gudgeon		x		x	
	Hypseleotris sp. 3	Murray Darling Carp Gudgeon		x	x		
	Hypseleotris spp.	Hybrid forms (e.g. Lake's Carp Gudgeon)	x		x		
	Mogumda adspersa	Southem Purple-spotted Gudgeon		x	x		
	Mogurnda clivicola	Flinders Ranges Purplespotted Gudgeon		x			
	Mogumda thermophila	Dalhousie Purple-spotted Gudgeon			*		
	Philyp nodon grandiceps	Flathead Gudgeon	x	x	x		
	Philypnodon macrostomus	Dwarf Flathead Gudgeon		x	x		
Gobiidae	Chla mydogobius eremius	Desert Goby				*	
	Chla mydogobius gloveri	Dalhousie Goby				*	
	Pseudogobius olorum	Western Bluespot Goby	x	x	x		x
	Ta sma nog obius lasti	Lagoon Goby	x	x	x		
Totals		58	21	35	17	23	3

APPENDIX 2

Management jurisdictions and important fish habitats in South Australia

South Australian Arid Lands		Adelaide \& M Lofty Ranges	
1	Da lhousie Springs	13	Strea ms (Ga wler to Hindma rsh catchments)
2	Neales River	14	Southern Fleurieu Swa mps
3	GAB mound springs	South Australian MDB	
4	Lake Torrens a nd fringing springs	15	Eastem Mount Lofty Ranges (Currency, to Marne catchments)
5	Balcanoona Creek	16	LakesAlexandrina and Albert \& the Coorong
6	Mac Donnell Creek	17	River M urray wetlands (Blanchetown-Wellington)
7	Coopers Ck, Coongie Lakes and Warburton River	18	River Murray cha nnel
Ey	Peninsula	19	Chowilla region, Berri and Disher Ckwetlands
8	Tod River	South East	
Northern and Yorke		20	West Avenue watercourse (Henry Creek)
9	Willochera Creek	21	Mt Burr swamps
10	Broughton River	22	Lake Bonney a rea \& Millic ent drains
Kangaroo Island		23	Mosquito Creek and Bool Lagoon
11	Westem streams (Middle, Westem, Roc ky, Stunsail, Ha rriet)	24	Lower SE rising springs (Ewens, Stratmans, Pic caninnie)
12	Willson River	25	Glenelg River (SA)

APPENDIX 3

Other data sources for mapping (see also Figure 3)

Museum records

Ava ilable SARDI Aquatic Sciences Research records 2001-2006

University of Adelaide studies

Miscella neous research records for South Australia

APPENDIX 4

Conservation criteria used to asses the Status of Taxa in South Australia ${ }^{38}$

IMPORTANT NOTE: It is imperative that, when assessing species schedules for South Australia, the following considerationsare made:

When assessing the status of taxa in SA, populations' external to this state must largely be ignored as the focus is on conserving taxa within this state.

Taxa may be classed as 'Rare' in South Australia if they meet one of the following critera (a. to d.) and do not meet the 'IUCN' criteria for 'Critically Endangered', 'Endangered' or 'Vulnerable'.

The definitions for the majority of terms used in the 'Rare' criteria are consistent with 'IUCN' definitions.

It is intended that the 'Rare' category for South Australia includestaxa that are in decline (but do not meet IUCN criteria) as well taxa that naturally have a limited presence (in terms of range or numbers etc) in this state.

Proposed ratings for taxa should be clearly justified by annotating with the assigned criteria
It is highly recommended that, before commencing a ny assessment, all the information accompanying the 'IUCN' criteria be read (refer to website : http://www.redlist.org/info/categories_ c riteria.html)

Species that a re considered 'Extinct' or 'C ritic ally Endangered' using the IUCN criteria are currently listed as 'Endangered' on the SA schedules.

IUC N 2001 C riteria ${ }^{6}$ used for Critically Endangered, Endangered and Vulnerable. Rare category developed for South Australia by the 'Threatened Species Schedule Subcommittee' in February 2002. IUCN criteria (2001) also applies for Extinct (EX): no reasonable doubt that the last individual has died, following exhaustive surveys, and Extinct in the Wild (EW): taxon is known to survive in captivity or as natura lised population(s) outside of historic range.

CRITICALLY ENDANGERED (CR)

A taxon is Critically Endangered when the best available evidence indicates that it meets any of the following criteria (A to E), and it is therefore considered to be facing an extremely high risk of extinction in the wild:

A. Reduction in population size based on any of the following:

1. An observed, estimated, inferred or suspected population size reduction of $\geq 90 \%$ over the last 10 years or three generations, whichever is the longer, where the causes of the reduction are clearly reversible AND understood AND ceased, based on (and specifying) a ny of the following:
(a) directobservation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced taxa, hybridization, pathogens, pollutants, competitors or parasites.
2. An observed, estimated, inferred or suspected population size reduction of $\geq 80 \%$ over the last 10 years or three generations, whic hever is the longer, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) a ny of (a) to (e) under A1.
3. A population size reduction of $\geq 80 \%$, projected or suspected to be met within the next 10 years or three generations, whic hever is the longer (up to a maximum of 100 years), based on (and spec ifying) a ny of (b) to (e) under A1.
4. An observed, estimated, inferred, projected or suspected population size reduction of $\geq 80 \%$ over any 10 yearor three generation period, whichever is longer (up to a maximum of 100 years), where the time period includes both the past and the future, and where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) any of (a) to (e) underA1.
B. Geographic range in the form of either B1 (extent of occurrence) OR B2 (area of occupancy) OR both:
5. Extent of occurrence estimated to be less than $100 \mathrm{~km}^{2}$, and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at only a single location.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) a rea, extent and/or qual lity of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
c. Extreme fluctuations in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
6. Area of occupancy estimated to be less than $10 \mathrm{~km}^{2}$, and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at only a single location.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occ urrence
(ii) a rea of occupancy
(iii) a rea, extent and/or quality of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
c. Extreme fluctuations in any of the following:
(i) extent of occurrence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
C. Population size estimated to number fewer than 250 mature individuals and either:
7. An estimated continuing decline of at least 25% within three years or one generation, whichever is longer, (up to a maximum of 100 years in the future) OR
8. A continuing decline, observed, projected, or inferred, in numbers of mature individuals AND at least one of the following (a-b):
(a) Population structure in the form of one of the following:
(i) no subpopulation estimated to conta in more than 50 mature individuals, OR
(ii) at least 90% of mature individuals in one subpopulation.
(b) Extreme fluctuations in number of mature individuals.
D. Population size estimated to number fewer than $\mathbf{5 0}$ mature individuals.
E. Quantitative analysis showing the probability of extinction in the wild is at least 50% within 10 years or three generations, whichever is the longer (up to a maximum of $\mathbf{1 0 0}$ years).

ENDANGERED (EN)

A taxon is Endangered when the best available evidence indicates that it meets any of the following criteria (A to E), and it is therefore considered to be facing a very high risk of extinction in the wild:

A. Reduction in population size based on any of the following:

1. An observed, estimated, inferred or suspected population size reduction of $\geq 70 \%$ over the last 10 years or three generations, whichever is the longer, where the causes of the reduction are clearly reversible AND understood AND ceased, based on (and specifying) any of the following:
(a) directobservation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced taxa, hybridization, pathogens, pollutants, competitors or parasites.
2. An observed, estimated, inferred or suspected population size reduction of $\geq 50 \%$ over the last 10 years or three generations, whichever is the longer, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) any of (a) to (e) underA1.
3. A population size reduction of $\geq 50 \%$, projected or suspected to be met within the next 10 years or three generations, whichever is the longer (up to a maximum of 100 years), based on (and specifying) a ny of (b) to (e) under A1.
4. An observed, estimated, inferred, projected or suspected population size reduction of $\geq 50 \%$ over any 10 year or three generation period, whichever is longer (up to a maximum of 100 years), where the time period includes both the past and the future, AND where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) any of (a) to (e) under A1.
B. Geographic range in the form of either B1 (extent of occurrence) OR B2 (area of occupancy) OR both:
5. Extent of occurrence estimated to be less than $5000 \mathrm{~km}^{2}$, and estimates ind ic ating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occurrence
(ii) area of occupancy
(iii) a rea, extent and/or quality of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
c. Extreme fluctuations in any of the following:
(i)extent of occurrence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
6. Area of occupancy estimated to be less than $500 \mathrm{~km}^{2}$, and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) a rea, extent and/or quality of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
C. Extreme fluctuations in any of the following:
(i) extent of oc currence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
C. Population size estimated to number fewer than 2500 mature individuals and either:
7. An estimated continuing dec line of at least 20% within five years or two generations, whichever is longer, (up to a maximum of 100 years in the future) $O R$
8. A continuing decline, observed, projected, or inferred, in numbers of mature individuals AND at least one of the following (a-b):
(a) Population structure in the form of one of the following:
(i) no subpopulation estimated to conta in more than 250 mature individuals, OR
(ii) at least 95% of mature individuals in one subpopulation.
(b) Extreme fluctuations in number of mature individuals.
D. Population size estimated to number fewer than $\mathbf{2 5 0}$ mature individuals.
E. Quantitative analysis showing the probability of extinction in the wild is at least 20% within 20 years or five generations, whichever is the longer (up to a maximum of 100 years).

VULNERABLE (VU)

A taxon is Vulnerable when the best available evidence indicates that it meets any of the following criteria (A to E), and it is therefore considered to be facing a high risk of extinction in the wild:

A. Reduction in population size based on any of the following:

1. An observed, estimated, inferred or suspected population size reduction of $\geq 50 \%$ over the last 10 years or three generations, whichever is the longer, where the causes of the reduction are: clearly reversible AND understood AND ceased, based on (and specifying) any of the following:
(a) directobservation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced taxa, hybridization, pathogens, pollutants, competitors or parasites.
2. An observed, estimated, inferred or suspected population size reduction of $\geq 30 \%$ over the last 10 years or three generations, whic hever is the longer, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) a ny of (a) to (e) underA1.
3. A population size reduction of $\geq 30 \%$, projected or suspected to be met within the next 10 years or three generations, whichever is the longer (up to a maximum of 100 years), based on (and specifying) a ny of (b) to (e) under A1.
4. An observed, estimated, inferred, projected or suspected population size reduction of $\geq 30 \%$ over any 10 year or three generation period, whichever is longer (up to a maximum of 100 years), where the time period includes both the past and the future, AND where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible, based on (and specifying) any of (a) to (e) under A1.
B. Geographic range in the form of either B1 (extent of occurrence) OR B2 (area of occupancy) OR both:
5. Extent of occurrence estimated to be less than $20,000 \mathrm{~km}^{2}$, and estimates indic ating at least two of a-c:
a. Severely fragmented or known to exist at no more than 10 locations.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) a rea, extent and/or quality of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
c. Extreme fluctuations in any of the following:
(i) extent of occurrence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
6. Area of occupancy estimated to be less than $2000 \mathrm{~km}^{2}$, and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than 10 locations.
b. Continuing decline, observed, inferred or projected, in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) a rea, extent and/or quality of habitat
(iv) number of locations or subpopulations
(v) number of mature individuals.
C. Extreme fluctuations in any of the following:
(i) extent of occ urrence
(ii) area of occupancy
(iii) number of locations or subpopulations
(iv) number of mature individuals.
C. Population size estimated to number fewer than 10,000 mature individuals and either:
7. An estimated continuing decline of at least 10% within 10 years or three generations, whichever is longer, (up to a maximum of 100 years in the future) OR
8. A continuing decline, observed, projected, or inferred, in numbers of mature individuals AND at least one of the following ($a-b$):
(a) Population structure in the form of one of the following:
(i) no subpopulation estimated to conta in more than 1000 mature individuals, OR
(ii) all mature individuals are in one subpopulation.
(b) Extreme fluctuations in number of mature individuals.
D. Population very small or restricted in the form of either of the following:
9. Population size estimated to number fewerthan 1000 mature individuals.
10. Population with a very restricted a rea of occupancy (typically less than $20 \mathrm{~km}^{2}$) or number of locations (typic ally five or fewer) such that it is prone to the effects of human activities or stochastic events within a very short time period in an uncerta in future, and is thus capable of becoming Critically Endangered oreven Extinct in a very short time period.
E. Quantitative analysis showing the probability of extinction in the wild is at least 10% within 100 years.

RARE (RA)

Criteria:
a. Reduced area of occupancy and/or extent of occurrence: Taxa that have disappeared from $>50 \%$ of their former area of occupancy and/or extent of occurrence and it is observed, estimated, inferred or suspected that further decline is continuing.
b. Declined in abundance: Taxa that have experienced a signific ant decline in abundance in $>50 \%$ of their former area of occupancy and/or extent of occurrence and it is observed, estimated, inferred or suspected that further decline is continuing.
c. Small populations: Taxa where it is observed, estimated, inferred or suspected that the total population size numbers <3000 mature individuals and specifying a ny of the following.
(i) Resident population
(ii) Regular visitors to the state (eg. migratory taxa)
(iii) Irregular visito rs to the state (eg. in response to episodic rainfall events)
(iv) Taxa that are experiencing range extensions into SA , with data for other areas showing that they are increasing in range and abundance.
d. Restricted extent of occurrence orarea of occupancy: Taxa with either i) or ii)
(i) extent of occurrence $<20,000 \mathrm{~km}^{2}$
(ii) area of occupancy $<2,000 \mathrm{~km}^{2}$ that is highly fragmented

APPENDIX 5

Summaries for non-listed species

Bonny Herring (Nematalosa erebi)
Other common names: Bonny Bream, Hairback Herring, Pyberry, Tukari

Hyrtl's Catfish (Neosilurus hyrtlii)

Other common names: Hyrtl's Tandan, Moonfish, Desert Catfish, Yellowfinned Catfish

Silver Tandan (Porochilus argenteus)
Other common names: Silver Catfish, Central Australian Catfish

Smelt(Retropinna semoni)
Other common names: Australian Smelt, Cucumber Fish, Kantari

Common Galaxias (Galaxias maculatus)
Other common names: Common Jollytail, Minnow, Pulangi

Smallmouthed Hardyhead (Atherinosoma mic rostoma)
Other common names: Silverside, Parli

Lake Eyre Hardyhead (Craterocephalus eyresii)
Other common names: Desert Hardyhead

Unspecked Hardyhead (Craterocephalus stercusmuscarum fulvus) Other common names: Mitchellian Freshwater Hardyhead, Flyspecked Hardyhead

Murray Rainbowfish (Melanotaenia fluviatilis)
Other common names: Murray-Darling Rainbowfish, Pink Ears, Crimson Spotted Rainbowfish

Desert Rainbowfish (Mela nota enia splendida tatei)
Other common names: Splendid Rainbowfish

Northwest Glassfish (Amba ssis sp.)
Other common names: Mueller's Glassfish, Chanda Perch

Muray-Darling Golden Perch (Macquaria ambigua ambigua) Other common names: Golden Perch, Callop, Yellowbelly, Murray Perch, Pomeri, Tarki

Lake Eyre Golden Perch (Macquaria sp.)
Other common names: Golden Perch, Callop, Yellowbelly

Banded Grunter (Amniataba percoides) Other common names: Barred grunter

Welch's Grunter (Bid ya nus welc hi)
Other common names: Black Bream

Spangled Grunter (Leiopotherapon unic olour) Other common names: Spangled Perch, Bobby Cod

Barcoo Grunter (Scortum barcoo)
 Other common names: Black Bream, Jade Perch

Carp Gudgeons (Hypseleotris spec ies complex)
Other common names: Western Carp Gudgeon, Midgley's Carp Gudgeon, Murray-Darling Carp Gudgeon, Lakes Carp Gudgeon (hybrid forms)

Fathead Gudgeon (Philypnodon grandiceps)
Other common names: Bighead Gudgeon

Dwarf Pathead Gudgeon (Philypnodon macrostomus)
Other common names: Dwarf Bighead Gudgeon

Desert Goby (Chla mydogobius eremius)
Other common names: none

Western Bluespot Goby (Pseudogobius olorum)
Other common names: Swan River Goby, Bluespot Goby, Galway's Goby

Lagoon Goby (Tasmanogobius lasti)
Other common names: Scary's Tasmangoby

Native Fish Austra lia (SA) Inc. 2009
www.na tivefishsa .a sn.a u

